AN UPPER BOUND FOR THE CARDINALITY OF AN s-DISTANCE SUBSET IN REAL EUCLIDEAN SPACE

Eiichi BANNAI* and Etsuko BANNAI

Department of Mathematics The Ohio State University Columbus, Ohio 43210 U.S.A.

Received 10 March 1980

If X is an s-distance subset in \mathbb{R}^d , then $|X| < {d+s \choose s} + {d+s-1 \choose s-1}$.

A subset X in a metric space M is called an s-distance subset in M if there are s distinct distances $\alpha_1, \alpha_2, \ldots, \alpha_s$, and all the α_i are realized. Delsarte—Goethals—Seidel [2] have shown that the cardinality |X| of an s-distance subset X in the unit sphere $S^d = \{(x_1, \ldots, x_{d+1}) | x_1^2 + \ldots + x_{d+1}^2 = 1\} \subset \mathbb{R}^{d+1}$ is bounded from above as

$$|X| \le {d+s \choose s} + {d+s-1 \choose s-1}.$$

Larman—Rogers—Seidel [3] have shown that $|X| \le (d+1)(d+4)/2$ for a 2-distance subset in \mathbb{R}^d . Here we first prove the following

Theorem 1. If X is an s-distance subset in \mathbb{R}^d , then

$$|X| \le {d+s \choose s} + {d+s-1 \choose s-1}.$$

(We remark that this upper bound is the same as the upper bound (1) for S^d , and that this is the same as the Larman—Rogers—Seidel bound (d+1)(d+4)/2 if s=2.) Next we prove the following

Theorem 2. The equality does not hold in (2) in Theorem 1.

^{*} Supported in part by NSF grant MCS--7903128 (OSURF 711977). AMS (1980) subject classification: 05 B 99; 51 M 99

1. Proof of Theorem 1

We give two different proofs. The first one is based on the argument by Larman—Rogers—Seidel [3]. The second one is more geometric and makes use of the upper bound (1) for S^d .

First Argument. We prepare with the following.

Lemma. Let $t_1, t_2, ..., t_d$ be independent variables, and let $t_0 = t_1^2 + t_2^2 + ... + t_d^2$. Let W_s be the space spanned by the monomials $t_0^{i_0} t_1^{i_1} ... t_d^{i_d}$ with $i_0 + i_1 + ... + i_d \le s$. Let h_s be the dimension of W_s . Then

(3)
$$h_s \le \binom{d+s}{s} + \binom{d+s-1}{s-1}.$$

Proof of Lemma. We use induction on s. The assertion is trivially true for s=1. We assume the assertion is true for s-1, namely

$$h_{s-1} \leq \binom{d+s-1}{s-1} + \binom{d+s-2}{s-2}.$$

Let Harm(j) be the space of harmonic polynomials in $t_1, t_2, ..., t_d$. Then

dimension of Harm
$$(j) = {d+j-1 \choose j} - {d+j-3 \choose j-2}$$

and so

$$\sum_{j=0}^{s} \left(\text{dimension of Harm}(j) \right) = \binom{d+s-1}{s} + \binom{d+s-2}{s-1}.$$

(Cf. [2, Theorem 3.2].)

Let f be any polynomial of degree i in $t_1, t_2, ..., t_d$. Then f is uniquely decomposed as

$$f = f_i + t_0 f_{i-2} + t_0^2 f_{i-4} + \dots + t_0^{\left[\frac{i}{2}\right]} f_{i-2\left[\frac{i}{2}\right]}$$

where $f_j \in \text{Harm }(j)$. (Cf. [2, Theorem 3.1].) A monomial $t_0^{i_0} t_1^{i_1} \dots t_d^{i_d}$ in W_s is contained in W_{s-1} if $f_i = 0$ for the polynomial $f = t_0^{i_0} t_2^{i_2} \dots t_d^{i_d}$ of degree $i_1 + i_2 + \dots + i_d = i$. Therefore there are at most

$$\sum_{i=0}^{s} (dimension \ of \ Harm \ (i))$$

linearly independent elements in W_s/W_{s-1} . Therefore

$$h_s \leq h_{s-1} + \binom{d+s-1}{s} + \binom{d+s-2}{s-1}$$
$$\leq \binom{d+s}{s} + \binom{d+s-1}{s-1}. \quad \blacksquare$$

(We remark that in fact equality holds in (3).)

We start the proof of Theorem 1.

Let $\vec{s} = (s_1, ..., s_d)$ and $\vec{t} = (t_1, ..., t_d)$ be two elements in \mathbb{R}^d . Let us define $F_{\vec{s}}(\vec{t})$ by

$$\begin{split} F_{\vec{s}}(\vec{t}) &= \prod_{j=1}^{s} (\|\vec{t} - \vec{s}\|^2 - \alpha_j^2) \\ &= \prod_{j=1}^{s} \left(\|\vec{t}\|^2 - 2 \sum_{i=1}^{d} s_i t_i + \|\vec{s}\|^2 - \alpha_j^2 \right). \end{split}$$

For a fixed \vec{s} , the function $F_{\vec{s}}(\vec{t})$ is a linear combination of monomials $(\|\vec{t}\|^2)^{i_0} t_1^{i_1} t_2^{i_2} \dots t_d^{i_d}$ with $i_0 + i_1 + \dots + i_d \leq s$, hence $F_{\vec{s}}(\vec{t}) \in W_s$. Since

$$F_{\vec{s}}(\vec{t}) = 0$$
 if $\vec{t} \in X$ and $\vec{t} \neq \vec{s}$

and

$$F_{\bar{s}}(\bar{t}) = (-1)^s \prod_{j=0}^s \alpha_j^2$$
 if $\bar{t} \in X$ and $\bar{t} = \bar{s}$,

the functions $F_{\bar{s}}$ (with $\bar{s} \in X$) are linearly independent. Therefore

$$|X| \le \text{dimension of } W_s = h_s \le \binom{d+s}{s} + \binom{d+s-1}{s-1}.$$

We remark that this bound is also true for s-near-distance subsets in \mathbb{R}^d . Here an s-near-distance subset means that each distance is "sufficiently" close to one of $\alpha_1, \alpha_2, \ldots, \alpha_s$. (cf. [3], Remark, page 262.)

Second Argument. First we remark that the argument in [2, Theorem 4.8] which proves the upper bound (1) for the cardinality of an s-distance subset in S^d is also true for an s-near-distance subset in S^d . Let X be an s-distance subset in \mathbb{R}^d . By applying a similarity transformation, we may assume without loss of generality that X is contained in a small neighborhood V_1 of the origin 0 in \mathbb{R}^d . By a natural or stereographic projection, we can map the neighborhood V_1 onto a neighborhood V_2 of the south pole P in $S^d = \{(x_1, \ldots, x_{d+1}) | x_1^2 + \ldots + x_d^2 + (x_{d+1} - 1)^2 = 1\}$. Then the s-distance subset X in \mathbb{R}^d is mapped onto an s-near-distance subset (in the sense defined above) in S^d if the neighborhood V_1 is small enough. Hence the remark mentioned at the beginning of this second argument completes the proof. We note that this argument also gives the same upper bound for s-near-distance subsets in \mathbb{R}^d .

2. Proof of Theorem 2

Here we give a sketch of the proof of Theorem 2. The details will be left to the reader. We assume that the reader is familiar with the paper [2] by Delsarte—Goethals—Seidel.

In [2, Theorem 6.6] it is shown that, if X is an s-distance subset in S^d (= Ω_{d+1} in the notation of [2]) and |X| attains the bound (1), then the set A(X) = = $\{\theta_i = \cos \alpha_i | i = 1, 2, ..., s\}$, the set of inner products (x, y) for $x, y \in X$ and $x \neq y$, must be equal to the set of the zeros of the following Jacobi polynomial of degree s:

$$P_s^{\left(\frac{d+1}{2}, \frac{d-1}{2}\right)}(x) = R_s(x) := Q_0(x) + Q_1(x) + \dots + Q_s(x),$$

where the $Q_i(x)$ are the Gegenbauer polynomials of degree i with $Q_i(1) = the \ dimension \ of \ Harm (i) \ in \ \mathbb{R}^{d+1}$.

For an s-near-distance set X in S^d let $A(X) = \{\theta_1, \theta_2, \dots, \theta_s\}$ be the associated inner-product set, namely for each (x, y) with $x, y \in X$ and $x \neq y$ there exists some θ_i such that $\|(x, y) - \theta_i\| < \varepsilon$ for sufficiently small ε . Then a careful examination of the proof of Delsarte—Goethals—Seidel [2] shows that the same conclusion as above is valid for an s-near-distance subset X in S^d for which |X| attains the bound (1). (Namely, the set A(X) approaches the set of the zeros of $R_s(x)$ as $\varepsilon \to 0$.) This implies that the distribution of the set A(X) is essentially the same as that of the zeros of the Jacobi polynomial $R_s(x)$, and this implies in turn that A(X) is distributed fairly homogeneously in the interval [-1, 1], and in particular that A(X) is not contained in a small neighborhood around 1.

On the other hand, the second argument in the proof of Theorem 1 shows that if there is an s-distance subset X in \mathbb{R}^d then we can construct an s-near-distance subset X with the same cardinality in an arbitrarily small neighborhood of S^d . This implies that A(X) is contained in a small neighborhood around 1. Therefore we have a contradiction if |X| attains the bound (1). Thus we complete the proof of Theorem 2.

3. Remarks

- (i) It is known that the upper bound (1) for s-distance subsets in S^d is not attained for $s \ge 3$ (by Bannai—Damerell [1] when combined with [2, Theorem 6.6]), while there are some examples which attain the bound (1) for S^d for $s \le 2$ (see [2]).
- (ii) It would be interesting to know how much the bounds (1) and (2) can be improved. However the right magnitude for the bounds (for both S^d and R^d) is $(d^s/s!)(1+o(1))$ if $d \to +\infty$, because there exist trivial s-(v, s, 1) Steiner systems (namely all s-subsets of a v-set). We remark that the bounds (1) and (2) are already of the same magnitude as $(d^s/s!)(1+o(1))$.

References

- E. BANNAI and R. M. DAMERELL, Tight spherical designs, I, J. Math. Soc. Japan, 31 (1979), 199—207.
- [2] P. DELSARTE, J. M. GOETHALS, and J. J. SEIDEL, Spherical codes and designs, Geometriae Dedicata, 6 (1977), 363—388.
- [3] D. G. LARMAN, C. A. ROGERS, and J. J. SEIDEL, On two-distance sets in Euclidean space, Bull. London Math. Soc. 9 (1977), 261—267.